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Abstract

Convulsive seizures are caused by transitory excitation of the brain, often manifesting clonic or
tonic-clonic convulsions. Convulsive seizures can be divided into ‘“symptomatic” seizures
associated with a brain injury or a metabolic/toxic disturbance of brain function and “idiopathic”
seizures with unknown cause. Nicotinic acetylcholine (nACh) receptors are pentameric ligand-
gated cation channels that control neuronal excitability and neurotransmitters release in the brain.
Consequently, neural nACh receptors are responsible for regulating various pathophysiological
functions including psychomaotor activity, cognition, autonomic functions, movement disorders and
seizure induction. Specifically, nACh receptors are suggested to be involved in seizures induction
in various idiopathic epileptic disorders (e.g., generalized epilepsies—epilepsy with generalized
tonic-clonic seizures and partial epilepsies—autosomal dominant nocturnal frontal lobe epilepsy and
generalized epilepsy) as well as in nicotine intoxication. However, the mechanisms underlying
nACh receptor-mediated seizure induction are still unknown. Among many available methods to
evaluate brain activity, expression analysis of Fos protein, a biological marker of neural excitation,
has been shown to be useful for exploring brain regions related to brain disorders and drug actions.
In the present study, therefore, behavioral and Fos-immunohistochemical techniques were
combined to delineate the underlying mechanisms of how stimulation of nACh receptor by nicotine
results in convulsive seizures (nicotine-induced seizures) in rodents. Treatment of animals with
nicotine (1-4 mg/kg, i.p.) produced motor excitement in a dose-dependent manner resulting in
convulsive seizures at 3 and 4 mg/kg. The nicotine-induced seizures were abolished by a subtype

non-selective nACh antagonist, mecamylamine (MEC), an a7 nACh antagonist, methyllycaconitine,



also significantly inhibited nicotine-induced seizures, whereas an a42 nACh antagonist, dihydro-
B-erythroidine, affected only nominally. Topographical analysis of Fos protein expression, a
biological marker of neural excitation, revealed that a convulsive dose (4 mg/kg) of nicotine region-
specifically activated neurons in the piriform cortex, amygdala, medial habenula, paratenial
thalamus, anterior hypothalamus and solitary nucleus among 48 brain regions examined, and this
was also suppressed by MEC. Furthermore, electric lesioning of the amygdala, but not the piriform
cortex, medial habenula and thalamus, specifically inhibited nicotine-induced seizures. In addition,
microinjection of nicotine (100 and 300 pg/side) into the amygdala elicited convulsive seizures in
a dose-related manner. Our findings strongly suggest that nicotine elicits convulsive seizures by
activating amygdala neurons mainly via a7 nACh receptors. In addition, we also succeeded in
characterizing the drug action, the NMDA receptor stimulant D-cycloserine, in modulating

extrapyramidal motor disorders, using the Fos expression analysis.
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expression.
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ABREVIATIONS AND ACRONYMS

AcC: core region of nucleus accumbens
AcS: shell region of nucleus accumbens
ADNFLE: autosomal dominant nocturnal frontal lobe epilepsy
AH: anterior hypothalamus

AIC: agranular insular cortex

AM: anteromedial thalamic nucleus
AMG: amygdala

Apir: amygdalopiriform transition area
AuC: auditory cortex

BLP: basolateral amygdaloid nucleus
BMP: basomedial amygdaloid nucleus
CA: Cornu Ammonis area of hippocampus
CgC: cingulated cortex

CM: centromedial thalamic nucleus

DCS: D-Cycloserine

DG: dentate gyrus of the hippocampus

DHBE: dihydro-beta-erythroidine
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DLENt: dorsolateral entorhinal cortex

dIST: dorsolateral striatum

DM: dorsomedial hypothalamic nucleus

dmST: dorsomedial striatum

EPS: Extrapyramidal side effects

GP: globus pallidus

HAL: Haloperidol

IHC: Immunohistochemical

10: inferior olive

IR: Immunoreactivity

LHb: lateral habenular nucleus

L-NAME: L-NG-Nitro-L-arginine methyl ester
LS: lateral septum

MC: motor cortex

MEC: mecamylamine

MePD: medial posterodorsal amygdaloid nucleus
MePV: medial posteroventral amygdaloid nucleus
MHDb: medial habenular nucleus

MLA: methyllycaconitine

~ Viii ~



mPFC: medial prefrontal cortex

NACh: nicotinic acetylcholine

NMDA: N-Methyl-D-aspartate

NOS: Nitric oxide synthase

PH: posterior hypothalamus

PirC: piriform cortex

PMCo: posteromedial cortical amygdaloid nucleus
PRh-Ect: perirhinal-ectorhinal cortex

PT: paratenial thalamic nucleus

PV: paraventricular thalamic nucleus
RPC: parvocellular part of the red nucleus
SC: sensory cortex

SNc: substantia nigra pars compacta

SNr: substantia nigra pars reticulata

Sol: solitary tract

VM: ventromedial thalamic nucleus
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1. Introduction and objectives

1.1 Seizures

Seizures are a transitory alteration of an abnormal, excessive and synchronized cerebral
activity that can result or not in motor symptomsY, a recent recommendation of the
International League Against the Epilepsy suggest to classify seizures according to the
seizure onset, basically in focal, generalized and unknown onset® 2. Convulsive seizures can
also be divided into “symptomatic” Seizures associated with a brain injury or a
metabolic/toxic disturbance of brain function (fever, head injury, brain infection,
proconvulsive drugs like baclofen, clozapine), and “idiopathic” seizures with unknown
cause? ¥, Although idiopathic seizures are the main cause of the epilepsy, symptomatic
seizures do not necessarily mean epilepsy, still there is a risk of subsequent epilepsy after
symptomatic seizures according to the damage extension (e.g., reversible disturbances < 3%

and brain abscesses > 10%)%.

1.2 Nicotinic acetylcholine receptors

The pentameric ligand-gated cation channel nicotinic acetylcholine (nACh) receptors are
composed of varying combinations of a (a1-010), B (B1-B4) and other (3, v, €) subunits®™,
these subunits assemble with different stoichiometry to form nACh receptors with different
properties, including distinct cationic permeability, agonist affinity and desensitization
properties® (Figure 1). Specifically, neural nACh receptor subtypes are constructed from

combination of 9 a (a2— a10) and 3 B (B2—p4) subunits. Among them, homomeric a7 and



heteromeric a4p2 nACh receptors are the most characterized and expressed subtypes in the
brain (Figure 2) whereas a3p4 nACh receptors mainly function as peripheral ganglionic
nACh receptors®®. In the brain, nACh receptors control neuronal excitability and
neurotransmitters release (GABA, dopamine, glutamate)?. Consequently, nACh receptors
are responsible for regulating cognitive performance, vigilance, locomotor activity, body
temperature,  respiration, cardiovascular and gastrointestinal  tract  function,
electroencephalographic activity, cortical blood flow and pain perception (for detailed

information on the function of neural nACh receptors consult Lloyd and Williams ).

1.2.1 Potential role of NACh receptors in epileptic seizures

Intoxication with nicotine, an exogenous nACh receptor agonist, evokes motor excitement
including tremors and convulsive seizures in humans? ) and experimental animal models**
19, In addition, nACh receptors are the first ion channels dysfunction reported to be involved
in genetic epilepsies'® 1. Indeed, genetic polymorphisms of a4, B2 and/or o7 subunits of
nACh receptors are involved in various epileptic disorders, including idiopathic generalized
epilepsy (e.g., epilepsy with generalized tonic-clonic seizures and juvenile myoclonic
epilepsy)'®2? and partial epilepsy (e.g., autosomal dominant nocturnal frontal lobe epilepsy
and benign epilepsy of childhood with centrotemporal spikes)'” 2225, Therefore, nACh
receptors could be involved in both “symptomatic” and “idiopathic” seizures, however, the
role and mechanisms of nACh receptors in seizure generation and epileptogenesis are still

unknown.



1.3 Fos protein

With regard to obtaining new information about the mechanism by which nACh receptors
cause convulsive seizures, we decided to investigate which brain regions nACh receptors
would be activate to cause convulsive seizures. For this purpose Fos protein, an immediate
early gene product, can be used as a biological marker of neural excitation?®. Fos protein
expression occurs region-specifically and reproducibly with various other stimuli; detection
of Fos expression is simple; the immunohistochemical (IHC) staining of Fos can also be
applicable to double staining with other proteins, tracers and neurotransmitters; and the
function of Fos is established as a part of the transcription factor activator protein 1 (AP-1;
Figure 3). Hence, IHC mapping analysis of Fos expression is a useful method to identify
brain regions affected by pathologies (e.g., emotional disorders, epilepsy and pain) and by
various drug treatments?®-39 without the necessity to measure others metabolites (e.g.,
glucose usage)®V. As a matter of fact, Fos expression applicability in neuroscience has lead
me to study and acquire expertise on the subject. The result of this experience was
transliterated in a book chapter about Fos protein expressional mechanism and neuroscience

application 25,

1.4 Objectives of the studies

The primary purpose of the present study is to delineate the mechanisms of how
stimulation of nACh receptors by nicotine result in convulsive seizures (nicotine-induced
seizures) in rodents. Specifically, IHC analysis of Fos expression were performed in

combination with behavioral studies to determine the seizure foci of nicotine-induced
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seizures. In addition, we also tried to characterize the drug action, the NMDA receptor
stimulant D-cycloserine, in modulating extrapyramidal motor disorders by using the Fos

expression analysis as the second part of the experiments.

2 Pharmacological analysis of the mechanisms underlying seizure

induction mediated by nACh receptors

2.1 Introduction

Nicotine, an alkaloid derived from leaves of Nicotinia species, is the primary active
compound of tobacco products 2. Nicotine acts as an exogenous agonist of nACh receptors
causing a series of pharmacological actions including antidepressant effects®® 34, cognitive
enhancement® 3¢, positive reinforcement (addictive effects)®> 3" and motor excitement*®: 36
3,39 Acute intoxication with nicotine shows two phases of symptoms; early phase
symptoms including nausea, vomiting, headache, tremors and seizures®>**°4%-44 and delayed
phase symptoms including CNS depression and coma** 4. Nicotine evoked symptoms are
mediated by nACh receptors. In the nervous system the neural homomeric a7 and
heteromeric 04p2, whereas a3p4 nACh receptor in the peripheral ganglia®®. The two main
neural nACh receptor subtypes o4p2 and a7 nACh receptors are widely expressed in the
CNS (Table 1) at the synapse (both pre- and postsynaptically) and extrasynaptically®  46-48)
both subtypes diverge around a higher affinity of its nicotine binding site (a4p2 nACh
receptors)® and a higher calcium permeability (a7 nACh receptors)*®. Therefore, while 04p2
nACh receptors respond for most actions induced by nicotine (<90%)%”, a7 nACh receptors

modulate intracellular signaling and neurotransmitter release*.
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In particular, motor excitement symptoms evoked by nicotine include Straub tail, tremors
and convulsive seizures™ 36 38 51.52) gyggesting the involvement of nACh receptors in the
pathogenesis of epileptic and movement disorders. Indeed, genetic polymorphisms of a4, 32
and/or o7 subunits of nACh receptors are involved in various epilepticus disorders, including
idiopathic generalized epilepsy (e.g., epilepsy with generalized tonic-clonic seizures,
childhood absence epilepsy, juvenile absence epilepsy and juvenile myoclonic epilepsy)*®-
22) and partial epilepsy (e.g., autosomal dominant nocturnal frontal lobe epilepsy and benign
epilepsy of childhood with centrotemporal spikes'’-2%25), On the other hand, especially after
the relatively recent findings that not only loss-of-function mutations in nACh receptors'®
53.54) are involved in the seizures generation, but also gain-of-function®>®", it has become
clear that little is known about the mechanism of how neural nACh receptors modulate

seizures and epileptogenesis.

The functional mechanism of neural nACh receptors is very complex, each nACh receptor
subtype composition affects the nACh receptor channel permeability and kinetics, whereas
the localization in the neural network determines the precise contribution of a given nACh
receptor population in a spatial- and time-dependent manner®®. Nicotine is useful as a
potential tool for understanding of the underlying mechanisms of nACh receptors in
inducing motor impairments, as recently demonstrated by our research group® 9. Fos
protein, an immediate early gene product, as a biological marker of neural activation is
widely used for mapping brain regions related to disease conditions (e.g., pain, epilepsy, and
emotional disorders) and biological interactions of various drug treatments?5:27:2%30) | the
present study, hence, we applied behavioral and Fos-IHC studies to delineate the mechanism

underlying nicotine-induced seizures in rodents.



2.2 Materials and methods

The experimental protocols hereby were approved by the Experimental Animal Research

Committee at Osaka University of Pharmaceutical Sciences.

2.2.1 Experimental animals

Male ddY mice (Japan SLC, Shizuoka, Japan) weighing 25-35 g and male SD rats (Japan
SLC, Shizuoka, Japan) weighting 200-300 g were used. The animals were kept in air-
conditioned rooms under a 12-h light/dark cycle (light on: 8:00 a.m.) and allowed ad libitum
access to food and water. The housing conditions and the animal care methods complied
with the Guide for the Care and Use of Laboratory Animals of the Ministry of Education,

Culture, Sports, Science and Technology of Japan.

2.2.2 Behavioral evaluation

Animals were intraperitoneally (i.p.) injected with nicotine (1-4 mg/kg) or saline (vehicle)
and individually placed in an observation box (25 x 42 x 20 cm). Nicotine-induced
behavioral excitement was evaluated over 15 minutes after the nicotine injection using a
modified six point-ranked score (0: no effect; 1: mild head tremor and Straub tail; 2: apparent
tremors in extended regions, 3: severe tremors with wild running; 4: clonic seizures; 5: tonic
or tonic-clonic seizures)®® 5V, Incidence of convulsive seizures was judged as positive when
scores were higher than 3 (Figure 4A). In the experiments using nACh receptor antagonists,

a subtype non-selective nACh antagonist, MEC (1 mg/kg), a specific a7 nACh antagonist,
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MLA (10 mg/kg), a specific a4p2 nACh antagonist, DHBE (5 mg/kg) or saline (vehicle) was
I.p. administered 15 min before the nicotine treatment (Figure 4A). The dosage of nACh
antagonists was set to a sufficient level to antagonize its respective nACh receptor in
previous studies [MEC: Gomita, et al. %2, DHPBE: Blondel, et al. %, and MLA: Blondel, et

al. 53, Liu ® and Kim, et al. ®9].

2.2.3 Analysis of Fos protein expression

Staining for Fos-immunoreactivity (IR) followed previously published methods?5: 28 30),
Briefly, ddY mice were treated with a convulsive dose (4 mg/kg, i.p.) of nicotine and brain
samples were obtained 120 min after the nicotine injection under pentobarbital (80 mg/kg,
i.p.) anesthesia. In some experiments, mice were pretreated with MEC (1 mg/kg) 15 min
before the nicotine injection. All animals were transcardially perfused with ice-cold
phosphate-buffered saline (PBS), which was followed by 4% formaldehyde perfusion,
following brains were stored in fresh fixative for at least 24 h. Following, coronal brain
sections of 30 um thickness were cut using a Microslicer (DSK-3000, Dosaka, Kyoto, Japan).
Slices were incubated for 2 hours in the presence of 2% normal rabbit serum solution, and
with goat c-Fos antiserum for an additional 18-36 hours. After PBS washing, the sections
were then incubated with biotinylated rabbit anti-goat 1gG for 2 hours and with PBS
containing 0.3% hydrogen peroxide for 30 min to inactivate the endogenous peroxidase.
Thereafter, the sections were incubated with avidin—biotinylated horseradish peroxidase
complex for 2 hours. Fos-IR was visualized by the diaminobenzidine—nickel staining method
and quantified by counting the number of Fos-IR positive nuclei in 48 regions®, (1) the
cerebral cortices (19 regions), mPFC, CgC, MC (1-4), SC (1-4), AIC, PirC (1-4), Apir, AuC,

PRh-Ect and DLENt, (2) the limbic regions and basal ganglia (14 regions), AcC, AcS, BLP,
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BMP, PMCo, MePV, MePD, CA1, CA3, DG, dIST, dmST, GP and LS, (3) the diencephalic
and lower brainstem regions (15 regions), MHb, LHb, PT, PV, AM, CM, VM, AH, PH, DM,

RPC, SNr, SNc, Sol and 10.

2.2.4 Electrical lesion study

Electrical lesion studies were performed using SD rats as reported previously®® ¢”. Briefly,
animals were anesthetized with pentobarbital (60 mg/kg, i.p.) and fixed in a stereotaxic
frame (Narishige, SR-6, Tokyo, Japan). A bipolar concentric electrode was bilaterally
inserted into the thalamus (Th; A: -1.5 mm; L: £0.4 mm; H: +4.2 mm); PirC (A: +1.3 mm;
L: +4.3 mm; H: +7.2 mm), MHb (A: +0.4 mm; L: £0.4 mm; H: +4 mm); or amygdala (AMG,;
A: -3.1 mm; L: £4 mm; H: +7.9 mm)®); and a direct current of 1 mA was delivered to the
respective region for 15 s. After a recovery period (2-4 days) from the surgery, animals were
treated with nicotine (4 mg/kg) or vehicle, individually placed in the observation box and
underwent behavioral evaluation as described previously. After the experiments, the animals
were deeply anesthetized with pentobarbital (80 mg/kg, i.p.) and the brain was removed from

the skull in order to confirm each electrical lesion placement (Figure 4B).

2.2.5 Microinjection study

Microinjection studies were performed using SD rats as reported previously®®'. After
the animals were fixed in a stereotaxic instrument under pentobarbital (40 mg/kg, i.p.)
anesthesia, a stainless steel guide cannula was bilaterally inserted 1 mm above the AMG (A:

-3.1 mm; L: #4 mm; H: +7.9 mm)®® and fixed on the skull with dental cement. After a
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recovery period (2—4 days), an injection cannula was inserted into the AMG through a guide
cannula and nicotine (100 or 300 pg/uL per side) was injected at a flow rate of 0.25 puL/min
(Microinfusion pump KDS220; KD Scientific Inc., USA) for 4 min under freely moving
conditions. The control animals were given the same volume of saline (vehicle) alone.
Nicotine-induced behavioral excitement was evaluated as previously described using a six
point-ranked score. After the experiment animals were deeply anesthetized with
pentobarbital (80 mg/kg, i.p.), and their brains removed for subsequent guide cannula

insertion site verification (Figure 4C).

2.2.6 Drugs

For the preparation of the experimental doses of nicotine (1, 2, 3 and 4 mg/kg, i.p.) a stock
solution was prepared using 5 mg/mL (-)-nicotine solved in normal saline solution. Stock
solution was diluted in saline to obtain, respectively, 0.05, 0.1, 0.6 and 0.8 mg/mL solutions.
Experimental dose of MEC (1 mg/kg) was made from diluting MEC stock solution of 5 mg
of MEC in 1 mL of 1% lactated saline solution in saline so 0.2 mg/mL MEC solution was

attained. MLA and DHBE was directly diluted in saline (vehicle solution).

Nicotine, MEC hydrochloride, MLA citrate and DAB substrate were purchased from
Sigma-Aldrich (St. Louis, MO, USA) and DHBE hydrobromide from Tocris (Bristol, UK).
The primary antibody against c-Fos was purchased from Santa Cruz Biotechnology Inc. (sc-
52-G-Santa Cruz, CA, USA), and the secondary biotinylated anti-goat 1gG antibody and
ABC kit from Vector Laboratories (Burlingame, CA, USA). Others common laboratory

reagents were also obtained from commercial sources.

2.2.7 Statistical analysis



Data are expressed as the mean £ SEM. Statistical significance of differences among
multiple groups was determined by Kruskal—Wallis test followed by the Steel—Dwass
post-hoc test (behavioral scores) or one-way ANOVA followed by the Tukey’s post-hoc test
(Fos expression). Comparisons between two groups were determined by parametric
Student’s t-test (Fos expression) or non-parametric Mann-Whitney’s U test (electrical
lesion). Comparisons of the seizure incidence rate were done by x2 test. A P-value of less

than 0.05 was considered statistically significant.

2.3 Results

2.3.1 Nicotine-induced convulsive seizures

Nicotine at doses from 1 to 4 mg/kg (i.p.) dose-dependently induced motor excitement in
mice and rats, inducing Straub tail and tremor (score 1-3) at low doses (e.g., 1-2 mg/Kkg, i.p.)
and convulsive seizures (score 4-5) at high doses (e.g., 3-4 mg/kg, i.p., Figure 5A, 5B).
Nicotine-induced motor excitement including seizures was normally transient and subsided
within 10 min. The percentages of animals which showed clonic or tonic-clonic seizures
with nicotine (4 mg/kg, i.p.) were 82% and 62.5% in mice and rats, respectively (Figure 5A,

5B).

To clarify the role of NACh receptors subtypes in nicotine-induced seizures, we tested the
actions of nACh antagonists in mice. Pretreatment of animals with the subtype non-selective
MEC (1 mg/kg, i.p.) markedly reduced the seizure intensity and incidence rate due to

nicotine (4 mg/kg, i.p.). The a7 nACh antagonist MLA (10 mg/kg, i.p.) significantly
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inhibited nicotine-induced seizures whereas the a4p2 nACh antagonist DHBE (5 mg/kg, i.p.)
only slightly reduced the seizure intensity and incidence (Figure 6). We also tried co-
administration of DHBE and MLA in order to clarify how much of nicotine-induced seizures
can be attributed to a7 and a4p2 nACh receptors, although, all animals died by what seems

to be peripheral respiratory failure (non-published data).

2.3.2 Nicotine-induced Fos expression

Using topographical analysis of Fos protein we explored brain regions excited with
nicotine-induced seizures, a biological marker of neural excitation, in mice. Treatment of
animals with nicotine at convulsive dose (4 mg/kg, i.p.) caused region-specific elevation of
Fos expression in 8 out 48 brain verified regions (Figure 7). In the 19 cortical regions,
nicotine increased the Fos expression in the PirC2 [t(7) = 2.385, P = 0.050], PirC4 [t(12) =
4.783, P < 0.001] and APir [t(10) = 3.470, P = 0.013] (Figure 8, 11). In the 29 subcortical
regions, nicotine significantly enhanced Fos expression in the AMG (Figure 9, 11), MHb
[t(5) = 3.982, P = 0.010], PT [t(6) = 2.882, P = 0.027), AH [t(10) = 2.397, P = 0.037] and in
Sol [t(5) = 3.121, P=0.025] (Figure 10, 11). In the AMG, all investigated regions presented
considerably high Fos expression (about two to four times the control level) after nicotine
treatment, while it reached statistical significance only in the MePD [t(6) = 2.439, P = 0.048]
(Figure 9. 11). Along with the hippocampus, other brain regions like striatum, GP, substantia

nigra, did not show any significant changes in Fos expression (Figure 7).

In further analysis, to confirm the involvement of nACh receptors, we assessed the effects
of MEC on nicotine-induced Fos expression in the above seven brain regions (e.g., PirC2,
PirC4, Apir, MePD, MHb, PT and Sol). We confirmed that nicotine (4 mg/kg, i.p.)

significantly augmented Fos expression in the PirC2 [F(2,21) = 15.880, P < 0.001], PirC4
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[F(2,23) = 7.498, P < 0.003], MePD [F(2,20) = 7.771, P < 0.003], MHb [F(2,25) = 86.928,
P < 0.001], PT [F(2,20) = 16.097, P < 0.001] and Sol [F(2,21) = 35,564, P < 0.001]. The
nicotine-induced Fos expression was mostly abolished by MEC [PirC2, F(2,21) = 15.880, P
= 0.004, PirC4, F(2,23) = 7.498, P = 0.027; MePD, F (2,20) = 7.771, P = 0.026; MHb,
F(2.25) = 86.928, P <0.001; PT, F(2,20) = 16.097, P = 0.001; and Sol, F(2,24) = 35.564, P
< 0.001] (Figure 12), indicating that nicotine-induced Fos expression is mediated mainly by

nACh receptors in these brain regions.

2.3.3 Electrical lesion studies

To determine the brain regions responsible for the generation of nicotine seizures, we next
conducted electrical lesion studies of the sites which showed high Fos expression with
nicotine in rats. Animals received electrical lesioning at the bilateral PirC, Th, MHb and
MePD and AMG 2-4 days before nicotine seizure induction test. Under these conditions,
only the lesion of the AMG noticeably reduced the intensity [U(8) = 3.000, P = 0.028] and
the incidence (y~ = 0.225, P = 0.009) of nicotine-induced seizures (Figure 13). In contrast,
neither lesioning of PirC (Figure 14), Th (Figure 15) nor MHb (Figure 16) affected the

seizure induction, suggesting that the AMG is responsible for nicotine seizures generation.

2.3.4 Microinjection

To further confirm the causative role of the AMG in nicotine-induced seizures, we
performed a microinjection study with nicotine into the AMG. Under freely moving

conditions, 100 and 300 pg/side of nicotine were injected into the bilateral AMG. Nicotine
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caused motor excitement (100 pg/side; x> = 13.602, df = 2, P = 0.0136, 300 pg/side; x> =
13.602, df = 2, P = 0.005) and seizure generation (300 pg/side; ¥*>= 5.76, P = 0.016) in a
dose-related manner (Figure 17). Reinforcing the role of AMG nACh receptors in the

causation of nicotine-induced seizures.

2.4 Discussion

Nicotine has proconvulsive actions when overdosed, reports showing the convulsive
action of nicotine in both humans and experimental animals are not uncommon'? 4 72,
Likewise, we confirmed that nicotine dose-dependently caused convulsive seizures in
rodents (ddY mice and SD rats). The dosage (3-4 mg/kg, i.p.) of nicotine that caused
convulsions was similar to those in previous reports'™> " where various mouse strains were
evaluated for nicotine-induced seizure sensitivity (more sensitive ST/bj mice EDsp = 2.34

mg/kg, i.p. and less sensitive DB mice EDso = 6.16 mg/kg, i.p.).

Several studies suggest that the proconvulsive action of nicotine is mediated by a7 nACh
receptors’#7®, although the involvement of nACh receptors subtypes in nicotine-induced
seizures are still uncertain. Here, nicotine-induced seizures were completely blocked by
MEC, illustrating nACh receptor mediation. In addition, MLA (a7 nACh antagonist) was
considerably more potent than DHBE (a4p2 nACh antagonist) in inhibiting nicotine-induced
seizures. These results are consistent with previous studies’"® and suggest that a7 nACh
receptors play a major role in inducing nicotine seizures. We have previously reported that
kinetic tremors induced by a low dose (1 mg/kg, i.p.) of nicotine are mediated by a7 nACh
receptors, whereas a4p2 nACh receptors are negligibly involved in tremor induction®.
Therefore, a7 nACh receptors are likely to play a key role in producing motor excitations

(e.g., tremor and seizure generation) with nicotine. However, we cannot completely deny a
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possibility that a4p2 nACh receptors are partly involved in nicotine-induced seizures since
DHE slightly reduced the seizure induction, which is consistent with the previous finding
that i.c.v. injection of DHPE reduced nicotine seizures by about 15%7%. Actually, in an
attempt to verify the complementary role of a4p2 nACh receptors in nicotine-induced
seizures we co-administrated MLA and DHE before the nicotine treatment, unfortunately,
all animals died of what seemed to be peripheral respiratory failure. Since, we used the same
concentrations when treating with only MLA or DHE, this mortality can only be explained

by a potentiation in the toxic actions of the DHBE’” and MLA™).

Fos protein expression is widely used as a marker of neural activation to explore the brain
regions linked to disease conditions (e.g., epilepsy, essential tremors) and drug responses?®
28,30, 79-84) \We previously demonstrated that a low dose (1 mg/kg, i.p.) of nicotine, which
reportedly induces cognitive enhancement®, antidepressant effects®® &) and positive
reinforcement®”, as well as kinetic tremor®®, region-specifically elevated Fos expression in
four brain regions; the PirC, MHb, Sol and 10. In the present study, a convulsive dose (4
mg/Kkg, i.p.) of nicotine further increased Fos expression in extended regions, the AMG and
parts of the diencephalon (thalamus and hypothalamus). Thus, these regions excited by
nicotine seemed to be related to seizure induction. In addition, the electrical lesion study
revealed that only the AMG lesion, but not the PirC, Th, or MHb lesions, suppressed
nicotine-induced seizures, suggesting that the AMG is the causative site for the induction of
nicotine seizures. This possibility was further supported by the fact that microinjected
nicotine into the AMG elicited convulsive seizures. The AMG is well known to be involved
in seizure generation and epileptogenesis®-9). In addition, previous in situ hybridization and
autoradiography studies revealed that in the AMG a7 and a4P2 nACh receptors highly
expressed® what could explain the participation of both o7 and 04p2 receptors in nicotine-
induced seizures® %0199 (Table 1), studies using mice and brain slices®* 1Y and neuronal cell

cultures®® 192 show the direct activation of nicotine and acetylcholine in the amygdala a7
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nACh receptors resulting mostly in the facilitation of glutamatergic transmission (60-40%)
92,101,102) " while a small proportion resulted in GABAergic (20%), and both glutamatergic
and GABAergic (17%) 92, Therefore, it is most likely that the AMG, especially the medial
AMG (e.g., MePD), is the primary foci of seizure generation by nicotine. However, we
cannot limit the causative site to the medial AMG since other amygdaloid nuclei (e.g., BLP
and BMP) also showed considerably high Fos expression with nicotine and are known to

receive dense cholinergic input from the basal forebrain?* 103104,

Although genetic polymorphisms of the gene (CHRNA7) encoding the a7 nACh receptor
subunit are known to be involved in various epileptic disorders in humans, including
idiopathic generalized epilepsy, childhood absence epilepsy, juvenile myoclonic epilepsy
and benign epilepsy of childhood with centrotemporal spikes®-?Y, the functional role and
mechanisms of a7 nACh receptors in modulating seizure generation and/or epileptogenesis
are still unknown. A line of studies showed that microdeletion of chromosome 15gq13.3
including CHRNA7 causes severe mental retardation, seizures and facial and/or digital
dysmorphisms. This evidence implies that a7 nACh receptors are involved in the
pathogenesis of mental illness (e.g., autism and schizophrenia) and negatively regulate
seizure generation®® 5 %%, Nonetheless, the present results suggest that excessive stimulation
of a7 nACh receptors elicits convulsive seizures by activating the AMG neurons, which are
implicated in seizure generation not only due to nicotine intoxication, but also that caused
by epileptic diseases. Concomitantly, gain-of-function mutation and/or copy number
polymorphism (e.g., duplication and triplication) of CHRNA7Y are associated with epileptic
disorders. Indeed, patients with duplication and triplication of CHRNA7 (15913.3 gains)
have been shown to exhibit neuropsychiatric phenotypes including epileptic seizures® °"
195)Further studies are required to delineate the role and clinical relevance of the a7 nACh

receptor in the pathogenesis of epileptic disorders.
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In conclusion, we performed behavioral and Fos-IHC studies in rodents to clarify the
mechanisms underlying nicotine-induced seizures. Treatment of animals with nicotine
produced motor excitement and elicited convulsive seizures at 3 and 4 mg/kg. MEC and an
a7 nACh antagonist, MLA, effectively blocked the nicotine seizures, but a a4p2 nACh
antagonist, DHBE, did so only nominally. In addition, Fos expression analysis revealed that
a convulsive dose (4 mg/kg) of nicotine region-specifically activated neurons in the PirC,
AMG, MHb, PT, AH and Sol, among which electric lesioning of the AMG specifically
inhibited nicotine seizure generation. Furthermore, microinjections of nicotine into the AMG
evoked convulsive seizures in a dose-related manner. The present results strongly suggest
that nicotine elicits convulsive seizures by activating AMG neurons primarily via a7 nACh

receptors (Figure 18).

3 Pharmacological analysis of the mechanisms underlying the glycine-
binding site stimulant of NMDA receptor-induced alleviation of

extrapyramidal disorders using Fos expression analysis

3.1 Introduction

Schizophrenia is a complex disorder with diverse psychotic symptoms including positive
(e.g., hallucinations, delusion) and negative (e.g., apathy, alogia) symptoms, neurocognitive
impairments, and mood disturbances'®'®. A hyperactive meso-limbic dopaminergic
system is well-known to be related to the pathogenesis of schizophrenia (dopamine
hypothesis)!'¥, accordingly numerous first-generation antipsychotics, which commonly

antagonize dopamine D, receptors, have been developed! 115:116) These agents effectively

~16 ~



improve positive symptoms (e.g., hallucination, delusion, and excitement) in patients with
schizophrenia through dopamine D- receptor blockade in the limbic regions (e.g., nucleus
accumbens)!!®). However, they frequently induce extrapyramidal side effects (EPS) by
blocking dopamine D, receptors in the basal ganglia (e.g., striatum)*"119, EPS include acute
dystonia (sustained abnormal postures and muscles spasms, especially of the head or neck),
akathisia (restlessness and pacing), Parkinsonism (tremor, skeletal muscle rigidity, and/or
bradykinesia) and tardive dyskinesia (involuntary, repetitive facial, torso and limb
movements)'t” 129 EPS are serious, sometimes debilitating and one of the main causes of

poor adherence to antipsychotic treatment*?% 122),

The assembling of the GIuN1 and GIuN2 subunits containing D-serine/glycine- and
glutamate-binding sites, respectively, constitute the heteromeric tetrameric receptor N-
methyl-D-aspartate (NMDA)*?3 129 Along with the D-serine/glycine- and glutamate-
binding sites, they also possess several regulatory sites sensitive to polyamines, Zn*, protons,
and glutathione!? 129, Dysfunctions of NMDA receptors are also suggested to be involved
in the pathogenesis of schizophrenia (glutamate hypothesis)*?¢1?®), The glutamate hypothesis
was derived from evidences showing that NMDA receptor blockers including phencyclidine
(PCP) and dizocilpine (MK-801) cause schizophrenia-like psychosis in human!26: 129-131),
Consequently, the glutamate hypothesis in schizophrenia encourages the development of
new medication for schizophrenia using several agents (e.g., D-cycloserine (DCS), D-serine,
and sodium benzoate)?” 128 132, 133) " though their actions regarding the induction and/or

modulation of EPS still require clarification.

As described in the section 1.3, Fos expression analysis has been shown to be useful to
explore the mechanism of many psychostimulants and psychotropic agents including
morphine®®* %) caffeine'®® 37 and antidepressants**®. Specifically, since dopamine D
receptors are known to tonically suppress Fos expression in the ST (caudate nucleus and
putamen) and the nucleus accumbens (AcC, AcS) ST 139144 Consequently, blockade of
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the dopamine D> receptors activities by first generation antipsychotic agents (e.g.,
haloperidol [HALY]) results in elevation of the Fos expression in these structures®?: 141 143. 145,
146) however, second generation antipsychotics (e.g., blonanserin) increase in the Fos
expression are more focused in the AcS than the ST4% 142146) " Therefore, the comparison of
antipsychotic-induced Fos expression between the AcS and dorsal ST has been used to
differentiate the second generation antipsychotics alleviation of motor side effects from the
first generation ones. Thus, we employed behavioral and striatal Fos-IHC in order to evaluate
the effects of D-cycloserine, a glycine-binding site stimulant of NMDA receptors, on

antipsychotic-induced EPS (i.e., bradykinesia).

3.2 Materials and methods

3.2.1 Animals

Male ddY mice (Japan SLC, Shizuoka, Japan) at 8-10 weeks of age were used. Animals
were kept in air-conditioned rooms (24 = 2°C and 50 + 10% relative humidity) under a 12-h
light/dark cycle (light on: 8:00-20:00) and allowed free access to food and water. Animal
care methods complied with the Guide for the Care and Use of Laboratory Animals of the
Ministry of Education, Culture, Sports, Science and Technology, and experimental protocols
were approved by the Experimental Animal Research Committee at Osaka University of

Pharmaceutical Sciences (#17, 30 March 2015).
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3.2.2 Evaluation of Bradykinesia

The pole test was performed as described previously by Shimizu, et al. ®. Mice were
placed at the top (head-upward) of a pole (diameter: 8 mm and height: 45 cm). The time for
the animal to rotate downward (Twm) and descend to the floor (Tiota) Was then measured with
a cut-off time of 90 s. Only mice that showed Twm < 8 s and Tital < 18 s In the pre-test trial

(typically performed 2 h before the test trial) were used.

The glycine-site stimulant of NMDA receptors DCS (3—30 mg/kg, i.p.) was administered
to animals 15 min before the HAL or vehicle injection, and the pole test was performed 30

min later.

3.2.3 Analysis of Fos Protein Expression

Regarding Fos immunohistochemical staining, brain samples were obtained from mice
120 min after the HAL injection. Under pentobarbital (80 mg/kg, i.p.) anesthesia, all mice
were transcardially perfused with ice-cold phosphate-buffered saline (PBS), which was
followed by 4% formaldehyde perfusion. Brains were removed from the skull and stored in
fresh fixative for at least 24 h. Fos immunohistochemical staining was performed using
previously reported methods?® 84147 Coronal sections (thickness: 30 um) were cut from the
brain using a Microslicer (DSK-3000, Dosaka, Kyoto, Japan). Slices were incubated for 2 h
with 2% normal rabbit serum, and with goat c-Fos antiserum for an additional 18-36 h.
Sections were then incubated with a biotinylated rabbit anti-goat 1gG secondary antibody for
2 h. After a 30 min incubation with 0.3% hydrogen peroxide for 30 min to inactivate
endogenous peroxidase, sections were incubated for 2 h with an avidin—biotinylated

horseradish peroxidase complex. Fos-IR was visualized using the diaminobenzidine—nickel
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staining method and quantified by counting the number of Fos-IR positive nuclei in dIST

and AcS.

3.2.4 Drugs

HAL and DCS were purchased from Sigma-Aldrich (St. Louis, MO, USA). The primary
antibody against c-Fos were purchased from Santa Cruz Biotechnology Inc. (Santa Cruz,
CA, USA), the Vectastain ABC kit, DAB substrate and the secondary biotinylated anti-goat
IgG antibody were purchased from Vector Laboratories (Burlingame, CA, USA) and others

common laboratory reagents were also obtained from commercial sources.

HAL was dissolved in 1% lactate solution and then diluted with physiological saline.
Other agents were dissolved in physiological saline. All drugs were injected i.p. in a volume

of 5 mL/kg into mice.

3.2.5 Statistical Analysis

Data are expressed as the mean + S.E.M. The significance of differences among multiple
groups was assessed by a one-way ANOVA followed by Tukey’s test or Kruskal-Wallis test
(nonparametric one-way ANOVA) followed by the Steel-Dwass post-hoc test. Comparisons
between only two groups were performed by the non-parametric Mann-Whitney’s U-test or

parametric Student’s t-test. A P-value of less than 0.05 was considered significant.
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3.3 Results

We confirmed that HAL at 1 mg/kg, i.p. markedly increased Tiwm and Tt Values, which
were significantly reversed by DCS (30 mg/kg, i.p., Figure 19). Brain samples were then
obtained from these animals 2 h after the HAL injection and subjected to Fos-IHC. Under
these conditions, control (Vehicle + Vehicle) and DCS (30 mg/kg, i.p.) animals showed
negligible Fos expression in the dIST (Figure 20, 21) and AcS (Figure 20, 22). The number
of Fos-IR-positive cells was markedly increased by HAL (vehicle + HAL, dIST: F(3, 21) =
14.979, P < 0.001, AcS: F(3, 21) = 8.3832, P = 0.003). However, HAL-induced Fos
expression was significantly inhibited by DCS in the dIST (P = 0.032). Haloperidol (vehicle
+ Hal) treatment showed an increment in the number of Fos-IR-positive cells in the dIST to
approximately 21 cells/grid; on the other hand, the treatment with DCS reduced HAL-
induced Fos expression to approximately 16 cells/gird. Interestingly, DCS did not

significantly affect HAL-induced Fos expression in the AcS (Figure 20, 21).

3.4 Discussion

The present study demonstrated that DCS, a glycine-binding site agonist of NMDA
receptors, significantly alleviated HAL-induced bradykinesia. The antibradykinetic doses of
DCS in the pole test were 3—30 mg/kg, i.p., a dose range similar to those producing efficacy
in animal models of schizophrenia with phencyclidine, a NMDA antagonist, (10-30 mg/kg,
s.c.)'*®. Therefore, the glycine-binding site stimulants of NMDA are expected to reduce EPS

associated with antipsychotic treatments in clinical settings.
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Antipsychotics elevate the regional expression of the Fos protein, a biological marker of
neural activation, both in the nucleus accumbens and striatum by blocking dopamine D>
receptors®. Furthermore, dopamine D receptor-mediated Fos expression reflects in the
nucleus accumbens the effectiveness of the antipsychotics and in the striatum the EPS
liability of antipsychotics4? 144 149-151) Hence, second-generation antipsychotics with fewer
EPS commonly lead to reduced Fos expression in the striatum®*4 152154 |n the present study,
we showed that DCS significantly reduced Fos expression in the dIST. This evidence further
supports DCS counteracts striatal dopamine D> receptor blockade by HAL to attenuate the
induction of EPS. The effects of DCS on Fos expression were region-specific and did not
significantly alter HAL-induced Fos expression in the AcS. These results suggest that a
combination of the glycine-binding site stimulants of NMDA receptors with antipsychotics
preferentially attenuates EPS (D2 blocking action in the striatum) without interfering with

the therapeutic action of antipsychotics.

These results suggest that DCS induces the activation of neurons in the striatum alleviating
the HAL-induced EPS. Therefore, based on the glutamate hypothesis, the glycine-binding
site stimulants of NMDA receptors are expected to become a new medication for
schizophrenia®®®. Clinical studies showed that several agents including DCS improved
negative symptoms and/or cognitive impairment in patients with schizophrenia®®-*>%, In
conclusion, the present results suggest that glycine-binding site agonists are beneficial not
only for its efficacy, but also side-effect management in the treatment of schizophrenia. Not
to mention that the presented evidence shows that Fos protein expression evaluation is an
effective way to strengthen the behavioral evidence and identify brain regions related to

pharmacological drug effects/side-effects.
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