On a certain symmetric property in the geometry of numbers

Makoto Nagata
Osaka University of Pharmaceutical Sciences，4－20－1 Nasahara，Takatsuki，Osaka 569－1094，Japan
（Received September 20，2011；Accepted November 17，2011）

We present a symmetric property on S_{3} in connection with the so－called Minkowski＇s first theorem in the geometry of numbers．

1 Motivation and Results

There is a theorem that is called the＂Theorem of Blichfeldt＂［1，p．42，Theorem 2］related to Minkowski＇s first theorem in the geometry of numbers．We regard Theorem 1 below as（a subset version of）the Theorem of Blichfeldt．
For two subsets A and B of an abelian group， we write $A-B=\{a-b \mid a \in A, b \in B\}$ ．Here we use the symbols,+- and 0 in the usual sense． By taking account of the adelic geometry of numbers，we consider the following：Let G be a locally compact abelian group，and let Λ be a discrete（at most countable）subgroup of G such that G / Λ is compact．Let μ be the Haar measure on G ，and let F be a measurable fundamental domain for G / Λ such that F is contained in a compact subset．Put $d(\Lambda)=\mu(F)$ ．Suppose that $d(\Lambda)>0$ ．Let A be a measurable set contained in a compact subset of G ．

Theorem 1．If $\mu(A)>d(\Lambda)$ ，then $\Lambda \cap(A-A)$ $\neq\{0\}$ ．

A century has passed since the geometry of numbers came into being．In this paper，we are hardly interested in what Theorem 1 means． That is，our interest is not the existence of lattice points in a measurable set itself．Rather，
our interest is a symmetry in the statement．This requires an explanation．

Note that $\Lambda=\Lambda-\Lambda$ ，i．e．，Λ is also a＂set of difference＂as well as $A-A$ ．If one puts these 2 sets of difference as $P_{1}=\Lambda-\Lambda, P_{2}=\mathrm{A}-\mathrm{A}$ ，then Theorem 1 says that $P_{1} \cap P_{2} \neq\{0\}$ ．Needless to say，of course，it also says that $\mathrm{P}_{2} \cap P_{1} \neq\{0\}$ ．Thus there is a（trivial！）symmetry on S_{2} for these 2 sets of difference，P_{1} and P_{2} ，in Theorem 1；i．e．， for any $\mathcal{T} \in S_{2}, P_{\mathcal{T}(1)} \cap P_{\mathcal{T}(2)} \neq\{0\}$ ．Here S_{2} is the symmetric group on 2 elements．

Question．What about a（nontrivial，if possible） symmetry on S_{3} ？Here S_{3} is the symmetric group on 3 elements．

Our answer to this question is the following： Let X be a subset of G ．We introduce $X-X$ as the third set of difference．Let $P_{1}=\Lambda-\Lambda$ ， $P_{2}=A-A$ and $P_{3}=X-X$ ．

Theorem 2．If $\# X \cdot \mu(A)>d(\Lambda)$ ，then $\left(P_{\mathcal{T}(1)} \cap\right.$ $\left.P_{\mathcal{T}(2)}\right) \cup\left(\left(P_{\mathcal{T}(1)}-P_{\mathcal{T}(2)}\right) \cap P_{\mathcal{T}(3)}\right) \neq\{0\}$ for all $\mathcal{T} \in S_{3}$ ． Here $\# X$ denotes the cardinality of X ．

If $\# X=1$ ，then $X-X=\{0\}$ ，so it is obvious that Theorem 2 implies Theorem 1．Conversely we show that Theorem 1 implies Theorem 2.

2 Proofs

We recall a proof of Theorem 1. The following intuitive proof is well-known as "the average method." Note that it shows that $(\Lambda-\Lambda) \cap(A-A) \neq\{0\}$.

Proof of Theorem 1. (cf. [1, p.48, Theorem 2]) Let $f: G \rightarrow \mathbb{R}$ be the characteristic function of A : $f(x)=1$ if $x \in \mathrm{~A}, f(x)=0$ otherwise. Then

$$
\int_{F} \sum_{a \in \Lambda} f(a+x) d \mu(x)=\int_{G} f(x) d \mu(x) \quad(=\mu(A))
$$

Thus

$$
\mu(F) \sup _{x \in F} \sum_{a \in \Lambda} f(a+x) \geq \mu(A)
$$

Since $\mu(F)=d(\Lambda)$ and since $\mu(A)>\mathrm{d}(\Lambda)$, we have $\sup _{x \in F} \Sigma_{a \in \Lambda} f(a+x)>1$. That is, there exists $x \in F$ and there exist $a, b \in \Lambda$ with $a \neq b$ such that $a+x, b+x \in A$. Therefore, $a-b \in A-A$.

We use Lemma 1 below in our proof of Theorem 2. It is deduced from Theorem 1, which is the case of $N=1$.

Lemma 1. Let $G, \Lambda, \mu, d(\Lambda)$ be as in Theorem 1. Let $N \geq 2$ be a natural number, fixed. Consider different N points $x_{1}, \ldots, x_{N} \in G$ and consider measurable sets A_{1}, \ldots, A_{N} which are contained in a compact subset of G. Here it is not necessary that $A_{i} \neq A_{j}$ for $i \neq j$, but it is necessary that $x_{i} \neq x_{j}$ for $i \neq j$.

If $x_{i}-x_{j} \notin A_{i}-A_{j}$ for all $i, j(i \neq j)$ and if $\sum_{i=1}^{N} \mu\left(A_{i}\right)>d(\Lambda)$, then there exist i, j (it is not necessary that $i \neq j$) and there exists $z \in \Lambda \backslash\{0\}$ such that $z+\left(x_{i}-x_{j}\right) \in A_{i}-A_{j}$.

Proof. We show first the equivalence between $\left(A_{i}-x_{i}\right) \cap\left(A_{j}-x_{j}\right) \neq \varnothing$ and $x_{i}-x_{j} \in A_{i}-A_{j}$ for $i \neq j$. Here $A_{i}-x_{i}$ means $A_{i}-\left\{x_{i}\right\}$.

If there exists $x \in\left(A_{i}-x_{i}\right) \cap\left(A_{j}-x_{j}\right)$, then there also exists $a_{i} \in A_{i}$; and there exists $a_{j} \in A_{j}$ such that $a_{i}-x_{i}=x=a_{j}-x_{j}$. Therefore $x_{i}-x_{j}=a_{i}-$
$a_{j} \in A_{i}-A_{j}$. Conversely, if $x_{i}-x_{j} \in A_{i}-A_{j}$, then there exists $a_{i} \in A_{i}$; and there also exists $a_{j} \in A_{j}$ such that $x_{i}-x_{j}=a_{i}-a_{j}$. Put $x:=a_{i}-x_{i}=a_{j}-x_{j}$, then $x \in\left(A_{i}-x_{i}\right) \cap\left(A_{j}-x_{j}\right)$.

Now, on the assumptions of Lemma 1, we have $\left(A_{i}-x_{i}\right) \cap\left(A_{j}-x_{j}\right)=\varnothing$ for $i \neq j$. Let A be a disjoint union $\sqcup_{i=1}^{N}\left(A_{i}-x_{i}\right)$. Then $\mu(A)=\Sigma_{i=1}^{N}$ $\mu\left(A_{i}-x_{i}\right)=\sum_{i=1}^{N} \mu\left(A_{i}\right)>d(\Lambda)$. By Theorem 1, there exists $z \in \Lambda \backslash\{0\}$ such that $z \in A-A$. That is, there exist $x, y \in A$ such that $z=x-y$. Thus, there exist i, j (it is not necessary that $i \neq j$) such that $x \in A_{i}-x_{i}, y \in A_{j}-x_{j}$; and so there exist $a_{i} \in A_{i}$ and also $a_{j} \in A_{j}$ such that $x=a_{i}-x_{i}, y=a_{j}-$ x_{j}. Therefore $z+\left(x_{i}-x_{j}\right) \in A_{i}-A_{j}$.

Proof of Theorem 2. If $\# X=1$, then $P_{3}=\{0\}$ and then Theorem 2 follows from Theorem 1. Now we assume that $\# X \geq 2$. Note that $P_{i}=-P_{i}$ for i $=1,2,3$.

Since $\# X \cdot \mu(A)>d(\Lambda)$, one can take $\left\{x_{1}, \ldots\right.$, $\left.x_{N}\right\} \subset X$ with $N \cdot \mu(A)>d(\Lambda)$. Let each A_{1}, \ldots, A_{N} (in Lemma 1) be A. Then $\sum_{i=1}^{N} \mu\left(A_{i}\right)>d(\Lambda)$.
(Case 1) \mathcal{T} is the identity, that is, $\mathcal{T}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right)$: If $\left(P_{1} \backslash\{0\}\right) \cap P_{2} \neq \varnothing$, then we have nothing to do. Assume that $\left(P_{1} \backslash\{0\}\right) \cap P_{2}=\varnothing$.

If $x_{i}-x_{j} \notin A-A=P_{2}$ for all $i, j(i \neq j)$, then, by Lemma 1, there exist $z \in P_{1} \backslash\{0\}, p, q$ (it is not necessary that $p \neq q$) and $b \in P_{2}$ such that $-z=b-\left(x_{p}-x_{q}\right) \in P_{1} \backslash\{0\}$. That is, $x_{p}-x_{q}=b+z$. If $p=q$, then $b+z=0$ and then $P_{1} \backslash\{0\} \ni-z=b \in P_{2}$, which contradicts to the assumption $\left(P_{1} \backslash\right.$ $\{0\}) \cap P_{2}=\varnothing$. Thus, we have $p \neq q$. Therefore, $P_{1}-P_{2} \ni z+b=x_{p}-x_{q} \in P_{3}$ and, by $x_{p}-x_{q} \neq 0$, $\left(P_{1}-P_{2}\right) \cap P_{3} \neq\{0\}$.

If there exist $i, j(i \neq j)$ such that $x_{i}-x_{j} \in P_{2}$, then $P_{3} \ni x_{i}-x_{j} \in P_{2} \subset P_{1}-P_{2}$ and, by $x_{i}-x_{j} \neq 0$, $\left(P_{1}-P_{2}\right) \cap P_{3} \neq\{0\}$.
(Case 2) $\mathcal{T}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1\end{array}\right):$ Assume that $P_{2} \cap P_{3}=\{0\}$.

Note that $P_{2} \cap P_{3} \supset\{0\}$. Then $x_{i}-x_{j} \notin A-A$ for $i, j(i \neq j)$. By Lemma 1 , there exist i, j (it is not necessary that $i \neq j$) such that $(\Lambda \backslash\{0\}) \cap(A-A)-$ $\left\{x_{i}-x_{j}\right\} \neq \varnothing$. Therefore $\left(P_{2}-P_{3}\right) \cap P_{1} \neq\{0\}$.
(Case 3) $\mathcal{T}=\left(\begin{array}{lll}1 & 2 & 3 \\ 1 & 3 & 2\end{array}\right):$ If $P_{3} \cap P_{2} \neq\{0\}$, then, by $0 \in P_{1},\{0\} \neq P_{3} \cap P_{2} \subset\left(P_{1}-P_{3}\right) \cap P_{2}$. Thus, we can assume that $P_{2} \cap P_{3}=\{0\}$. By Case 2 , we have $\left(P_{2}-P_{3}\right) \cap P_{1} \neq\{0\}$. That is, there exist $z \in P_{1} \backslash\{0\}$, $b \in P_{2}, y \in P_{3}$ such that $z=b+y$.

If $b=0$, then $0 \neq z=y$, meaning that $P_{1} \cap P_{3} \neq\{0\}$.

If $b \neq 0$, then, by $P_{2} \ni b=z-y \in P_{1}-P_{3},\left(P_{1}-\right.$ $\left.P_{3}\right) \cap P_{2} \neq\{0\}$. In either case, we have $\left(P_{1} \cap P_{3}\right)$ $\cup\left(\left(P_{1}-P_{3}\right) \cap P_{2}\right) \neq\{0\}$.
(Case 4) The case of $\mathcal{T}=\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 1 & 3\end{array}\right)\left(\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 2 & 1\end{array}\right),\left(\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right)\right)$ follows from Case 1 (resp. Cases 2, 3).

References

[1] P. M. Gruber, C. G. Lekkerkerker Geometry of Numbers North-Holland Mathematical Library, Vol. 371987 (2nd ed.)

