- Articles -

On a certain symmetric property in the geometry of numbers

Makoto Nagata

Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan (Received September 20, 2011; Accepted November 17, 2011)

We present a symmetric property on S_3 in connection with the so-called Minkowski's first theorem in the geometry of numbers.

1 Motivation and Results

There is a theorem that is called the "Theorem of Blichfeldt" [1, p.42, Theorem 2] related to Minkowski's first theorem in the geometry of numbers. We regard Theorem 1 below as (a subset version of) the Theorem of Blichfeldt.

For two subsets A and B of an abelian group, we write $A-B=\{a-b|a\in A, b\in B\}$. Here we use the symbols +, - and 0 in the usual sense. By taking account of the adelic geometry of numbers, we consider the following: Let G be a locally compact abelian group, and let Λ be a discrete (at most countable) subgroup of G such that G/Λ is compact. Let μ be the Haar measure on G, and let F be a measurable fundamental domain for G/Λ such that F is contained in a compact subset. Put $d(\Lambda)=\mu(F)$. Suppose that $d(\Lambda)>0$. Let A be a measurable set contained in a compact subset of G.

Theorem 1. If $\mu(A) > d(\Lambda)$, then $\Lambda \cap (A-A) \neq \{0\}$.

A century has passed since the geometry of numbers came into being. In this paper, we are hardly interested in what Theorem 1 means. That is, our interest is not the existence of lattice points in a measurable set itself. Rather, our interest is a symmetry in the statement. This requires an explanation.

Note that $\Lambda = \Lambda - \Lambda$, i.e., Λ is also a "set of difference" as well as A - A. If one puts these 2 sets of difference as $P_1 = \Lambda - \Lambda$, $P_2 = A - A$, then Theorem 1 says that $P_1 \cap P_2 \neq \{0\}$. Needless to say, of course, it also says that $P_2 \cap P_1 \neq \{0\}$. Thus there is a (trivial!) symmetry on S_2 for these 2 sets of difference, P_1 and P_2 , in Theorem 1; i.e., for any $\tau \in S_2$, $P_{\tau(1)} \cap P_{\tau(2)} \neq \{0\}$. Here S_2 is the symmetric group on 2 elements.

Question. What about a (nontrivial, if possible) symmetry on S_3 ? Here S_3 is the symmetric group on 3 elements.

Our answer to this question is the following: Let X be a subset of G. We introduce X-Xas the third set of difference. Let $P_1=\Lambda-\Lambda$, $P_2=A-A$ and $P_3=X-X$.

Theorem 2. If $\#X \cdot \mu(A) > d(\Lambda)$, then $(P_{\tau(1)} \cap P_{\tau(2)}) \cup ((P_{\tau(1)} - P_{\tau(2)}) \cap P_{\tau(3)}) \neq \{0\}$ for all $\tau \in S_3$. Here #X denotes the cardinality of X.

If #X=1, then $X-X=\{0\}$, so it is obvious that Theorem 2 implies Theorem 1. Conversely we show that Theorem 1 implies Theorem 2.

2 Proofs

We recall a proof of Theorem 1. The following intuitive proof is well-known as "the average method." Note that it shows that $(\Lambda - \Lambda) \cap (A - A) \neq \{0\}$.

Proof of Theorem 1. (cf. [1, p.48, Theorem 2]) Let $f: G \to \mathbb{R}$ be the characteristic function of A: f(x)=1 if $x \in A$, f(x)=0 otherwise. Then

$$\int_F \sum_{a \in \Lambda} f(a+x) d\mu(x) = \int_G f(x) d\mu(x) \quad (=\mu(A))$$

Thus

$$\mu(F) \sup_{x \in F} \sum_{a \in \Lambda} f(a+x) \ge \mu(A)$$

Since $\mu(F) = d(\Lambda)$ and since $\mu(A) > d(\Lambda)$, we have $\sup_{x \in F} \sum_{a \in \Lambda} f(a+x) > 1$. That is, there exists $x \in F$ and there exist $a, b \in \Lambda$ with $a \neq b$ such that $a+x, b+x \in A$. Therefore, $a-b \in A-A$.

We use Lemma 1 below in our proof of Theorem 2. It is deduced from Theorem 1, which is the case of N=1.

Lemma 1. Let $G, \Lambda, \mu, d(\Lambda)$ be as in Theorem 1. Let $N \ge 2$ be a natural number, fixed. Consider different N points $x_1, \ldots, x_N \in G$ and consider measurable sets A_1, \ldots, A_N which are contained in a compact subset of G. Here it is not necessary that $A_i \neq A_j$ for $i \neq j$, but it is necessary that $x_i \neq x_j$ for $i \neq j$.

If $x_i - x_j \notin A_i - A_j$ for all i, j $(i \neq j)$ and if $\sum_{i=1}^{N} \mu(A_i) > d(\Lambda)$, then there exist i, j (it is not necessary that $i \neq j$) and there exists $z \in \Lambda \setminus \{0\}$ such that $z + (x_i - x_j) \in A_i - A_j$.

Proof. We show first the equivalence between $(A_i - x_i) \cap (A_j - x_j) \neq \emptyset$ and $x_i - x_j \in A_i - A_j$ for $i \neq j$. Here $A_i - x_i$ means $A_i - \{x_i\}$.

If there exists $x \in (A_i - x_i) \cap (A_j - x_j)$, then there also exists $a_i \in A_i$; and there exists $a_j \in A_j$ such that $a_i - x_i = x = a_j - x_j$. Therefore $x_i - x_j = a_i - x_j$ $a_j \in A_i - A_j$. Conversely, if $x_i - x_j \in A_i - A_j$, then there exists $a_i \in A_i$; and there also exists $a_j \in A_j$ such that $x_i - x_j = a_i - a_j$. Put $x := a_i - x_i = a_j - x_j$, then $x \in (A_i - x_i) \cap (A_j - x_j)$.

Now, on the assumptions of Lemma 1, we have $(A_i - x_i) \cap (A_j - x_j) = \emptyset$ for $i \neq j$. Let A be a disjoint union $\bigsqcup_{i=1}^{N} (A_i - x_i)$. Then $\mu(A) = \sum_{i=1}^{N} \mu(A_i - x_i) = \sum_{i=1}^{N} \mu(A_i) > d(\Lambda)$. By Theorem 1, there exists $z \in \Lambda \setminus \{0\}$ such that $z \in A - A$. That is, there exist $x, y \in A$ such that z = x - y. Thus, there exist i, j (it is not necessary that $i \neq j$) such that $x \in A_i - x_i, y \in A_j - x_j$; and so there exist $a_i \in A_i$ and also $a_j \in A_j$ such that $x = a_i - x_i, y = a_j - x_j$. Therefore $z + (x_i - x_j) \in A_i - A_j$.

Proof of Theorem 2. If #X=1, then $P_3=\{0\}$ and then Theorem 2 follows from Theorem 1. Now we assume that $\#X\geq 2$. Note that $P_i=-P_i$ for i=1, 2, 3.

Since $\#X \cdot \mu(A) > d(\Lambda)$, one can take $\{x_1, \ldots, x_N\} \subset X$ with $N \cdot \mu(A) > d(\Lambda)$. Let each A_1, \ldots, A_N (in Lemma 1) be A. Then $\sum_{i=1}^N \mu(A_i) > d(\Lambda)$.

(Case 1) τ is the identity, that is, $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$: If $(P_1 \setminus \{0\}) \cap P_2 \neq \emptyset$, then we have nothing to do. Assume that $(P_1 \setminus \{0\}) \cap P_2 = \emptyset$.

If $x_i - x_j \notin A - A = P_2$ for all i, j $(i \neq j)$, then, by Lemma 1, there exist $z \in P_1 \setminus \{0\}$, p, q (it is not necessary that $p \neq q$) and $b \in P_2$ such that $-z = b - (x_p - x_q) \in P_1 \setminus \{0\}$. That is, $x_p - x_q = b + z$. If p = q, then b + z = 0 and then $P_1 \setminus \{0\} \ni -z = b \in P_2$, which contradicts to the assumption $(P_1 \setminus \{0\}) \cap P_2 = \emptyset$. Thus, we have $p \neq q$. Therefore, $P_1 - P_2 \ni z + b = x_p - x_q \in P_3$ and, by $x_p - x_q \neq 0$, $(P_1 - P_2) \cap P_3 \neq \{0\}$.

If there exist i, j $(i \neq j)$ such that $x_i - x_j \in P_2$, then $P_3 \ni x_i - x_j \in P_2 \subset P_1 - P_2$ and, by $x_i - x_j \neq 0$, $(P_1 - P_2) \cap P_3 \neq \{0\}$.

(Case 2)
$$\mathcal{T} = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$$
: Assume that $P_2 \cap P_3 = \{0\}$.

Note that $P_2 \cap P_3 \supset \{0\}$. Then $x_i - x_j \notin A - A$ for $i, j \ (i \neq j)$. By Lemma 1, there exist i, j (it is not necessary that $i \neq j$) such that $(\Lambda \setminus \{0\}) \cap (A - A) - \{x_i - x_j\} \neq \emptyset$. Therefore $(P_2 - P_3) \cap P_1 \neq \{0\}$.

(Case 3) $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}$: If $P_3 \cap P_2 \neq \{0\}$, then, by $0 \in P_1$, $\{0\} \neq P_3 \cap P_2 \subset (P_1 - P_3) \cap P_2$. Thus, we can assume that $P_2 \cap P_3 = \{0\}$. By Case 2, we have $(P_2 - P_3) \cap P_1 \neq \{0\}$. That is, there exist $z \in P_1 \setminus \{0\}$, $b \in P_2$, $y \in P_3$ such that z = b + y.

If b=0, then $0 \neq z = y$, meaning that $P_1 \cap P_3 \neq \{0\}$.

If $b \neq 0$, then, by $P_2 \supseteq b = z - y \in P_1 - P_3$, $(P_1 - P_3) \cap P_2 \neq \{0\}$. In either case, we have $(P_1 \cap P_3) \cup ((P_1 - P_3) \cap P_2) \neq \{0\}$.

(Case 4) The case of $\tau = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} (\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix})$ follows from Case 1 (resp. Cases 2, 3).

References

 P. M. Gruber, C. G. Lekkerkerker *Geometry* of Numbers North-Holland Mathematical Library, Vol. 37 1987 (2nd ed.)