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1　Motivation and Results

　There is a theorem that is called the “Theorem 

of Blichfeldt” [1, p.42, Theorem 2] related to 

Minkowski’s first theorem in the geometry of 

numbers. We regard Theorem 1 below as (a 

subset version of) the Theorem of Blichfeldt.

　For two subsets A and B of an abelian group, 

we write A-B={a-b|a!A, b!B}. Here we 

use the symbols +, - and 0 in the usual sense. 

By taking account of the adelic geometry of 

numbers, we consider the following: Let G be 

a locally compact abelian group, and let K be a 

discrete (at most countable) subgroup of G such 

that G/K is compact. Let n be the Haar measure 

on G, and let F be a measurable fundamental 

domain for G/K such that F is contained in a 

compact subset. Put d(K)=n(F). Suppose that 

d(K)>0. Let A be a measurable set contained in 

a compact subset of G.

Theorem 1.　If n(A)>d(K), then K+(A-A) 

!{0}.

　A century has passed since the geometry of 

numbers came into being. In this paper, we are 

hardly interested in what Theorem 1 means. 

That is, our interest is not the existence of 

lattice points in a measurable set itself. Rather, 

our interest is a symmetry in the statement. This 

requires an explanation.

　Note that K=K-K, i.e., K is also a “set of 

difference” as well as A-A. If one puts these 2 

sets of difference as P1=K-K, P2=A-A, then 

Theorem 1 says that P1+P2!{0}. Needless to 

say, of course, it also says that P2+P1!{0}. Thus 

there is a (trivial!) symmetry on S2 for these 2 

sets of difference, P1 and P2, in Theorem 1; i.e., 

for any T!S2, PT(1)+PT(2)!{0}. Here S2 is the 

symmetric group on 2 elements.

Question.　What about a (nontrivial, if possible) 

symmetry on S3? Here S3 is the symmetric group 

on 3 elements.

　Our answer to this question is the following: 

Let X be a subset of G. We introduce X-X 

as the third set of difference. Let P1=K-K, 

P2=A-A and P3=X-X.

Theorem 2.　If #X · n(A)>d(K), then (PT(1)+ 

PT(2)),((PT(1)-PT(2))+PT(3))!{0} for all T!S3. 

Here #X denotes the cardinality of X.

　If #X=1, then X-X={0}, so it is obvious that 

Theorem 2 implies Theorem 1. Conversely we 

show that Theorem 1 implies Theorem 2.
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2　Proofs

　We recall a proof of Theorem 1. The following

intuitive proof is well-known as “the average meth-

od.” Note that it shows that (K-K)+(A-A)!{0}.

Proof of Theorem 1. (cf. [1, p.48, Theorem 2]) 

Let f : G → R be the characteristic function of A: 

f(x)=1 if x!A, f(x)=0 otherwise. Then

Thus

Since n(F)=d(K) and since n(A)>d(K), we 

have supx!F Ra!K f(a+x)>1. That is, there exists 

x!F and there exist a, b!K with a!b such that 

a+x, b+x!A. Therefore, a-b!A-A.

　We use Lemma 1 below in our proof of 

Theorem 2. It is deduced from Theorem 1, 

which is the case of N=1.

Lemma 1.　Let G, K, n, d(K) be as in Theorem 

1. Let N$2 be a natural number, fixed. 

Consider different N points x1, . . . , xN!G and 

consider measurable sets A1, . . . ,AN which 

are contained in a compact subset of G. Here 

it is not necessary that Ai!Aj for i!j, but it is 

necessary that xi!xj for i!j.

　If xi-xj"Ai-Aj for all i, j (i!j) and if 

R
N
i=1 n(Ai)>d(K), then there exist i, j (it is not 

necessary that i!j) and there exists z!K\{0} 

such that z+(xi-xj)!Ai-Aj.

Proof. We show first the equivalence between 

(Ai-xi)+(Aj-xj)!Q and xi-xj!Ai-Aj for 

i!j. Here Ai-xi means Ai-{xi}.

　If there exists x!(Ai-xi)+(Aj-xj), then there 

also exists ai!Ai; and there exists aj!Aj such 

that ai-xi=x=aj-xj. Therefore xi-xj=ai-

aj!Ai-Aj. Conversely, if xi-xj!Ai-Aj, then 

there exists ai!Ai; and there also exists aj!Aj 

such that xi-xj=ai-aj. Put x:=ai-xi=aj-xj, 

then x!(Ai-xi)+(Aj-xj ).

　Now, on the assumptions of Lemma 1, we 

have (Ai-xi)+(Aj-xj)=Q for i!j. Let A be a 

disjoint union .N
i=1 (Ai-xi). Then n(A)=RN

i=1 

n(Ai-xi) =R
N
i=1 n(Ai)>d(K). By Theorem 1, 

there exists z!K\{0} such that z!A-A. That 

is, there exist x, y!A such that z=x-y. Thus, 

there exist i, j (it is not necessary that i!j) such 

that x!Ai-xi, y!Aj-xj; and so there exist 

ai!Ai and also aj!Aj such that x=ai-xi, y=aj-

xj. Therefore z+(xi-xj)!Ai-Aj.

Proof of Theorem 2. If #X=1, then P3={0} and 

then Theorem 2 follows from Theorem 1. Now 

we assume that #X$2. Note that Pi=-Pi for i 

=1, 2, 3.

　Since #X · n(A)>d(K), one can take {x1, . . . , 

xN} 1X with N · n(A)>d(K). Let each A1, . . . , 

AN (in Lemma 1) be A. Then RN
i=1 n(Ai)>d(K).

(Case 1) T is the identity, that is, T=e11
 2
2
 3
3o: If

(P1\{0})+P2!Q, then we have nothing to do. 

Assume that (P1\{0})+P2=Q.

　If xi-xj"A-A=P2 for all i, j (i!j), then, by 

Lemma 1, there exist z!P1\{0}, p, q (it is not 

necessary  that  p!q)  and  b!P2  such that

-z=b-(xp-xq)!P1\{0}. That is, xp-xq=b+z. If 

p=q, then b+z=0 and then P1\{0}"-z=b!P2, 

which contradicts to the assumption (P1\

{0})+P2=Q. Thus, we have p!q. Therefore, 

P1-P2"z+b=xp-xq!P3 and, by xp-xq!0, 

(P1-P2)+P3!{0}.

　If there exist i, j (i!j) such that xi-xj!P2, 

then P3"xi-xj!P21P1-P2 and, by xi-xj!0, 

(P1-P2)+P3!{0}.

(Case 2) T =e12
 2
3
 3
1o: Assume that P2+P3={0}. 
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Note that P2+P32{0}. Then xi-xj"A-A for 

i, j (i!j). By Lemma 1, there exist i, j (it is not 

necessary that i!j) such that (K\{0})+(A-A)-

{xi-xj}!Q. Therefore (P2-P3)+P1!{0}.

(Case 3) T =e11
 2
3
 3
2o: If P3+P2!{0}, then, by

0!P1, {0}!P3+P21(P1-P3)+P2. Thus, we can 

assume that P2+P3={0}. By Case 2, we have 

(P2-P3)+P1!{0}. That is, there exist z!P1\{0}, 

b!P2, y!P3 such that z=b+y.

　 I f  b=0,  t h en  0! z= y ,  mean i ng  t h a t 

P1+P3!{0}.

　If b!0, then, by P2"b=z-y!P1-P3, (P1-

P3)+P2!{0}. In either case, we have (P1+P3) 

,((P1-P3)+P2)!{0}.

(Case 4) The case of T=e12
 2
1
 3
3o(e

1
3
 2
2
 3
1o,e

1
3
 2
1
 3
2o)

follows from Case 1 (resp. Cases 2, 3).

References

[1] P. M. Gruber, C. G. Lekkerkerker Geometry 

of Numbers North-Holland Mathematical 

Library, Vol. 37 1987 (2nd ed.)




